HEADQUARTERS DEPARTMENT OF THE ARMY Washington, D.C. 28 November 1986 NO. 5-855-4 ## HEATING, VENTILATION, AND AIR CONDITIONING OF HARDENED INSTALLATION ## TABLE OF CONTENTS | | Paragraph | Page | |------------|---|--| | CHAPTER 1. | INTRODUCTION | | | | Purpose 1-1 Scope 1-2 Criteria 1-3 Operating modes 1-4 Hardened configurations 1-5 | 1-1
1-1
1-1
1-2
1-3 | | CHAPTER 2. | DESIGN CONSIDERATIONS | | | | General 2-1 Makeup air 2- Combustion air 2-3 Vitiated air 2-4 Temperature and humidity 2-5 Internal loads 2-6 External loads 2-7 Moisture loads 2-8 | 2-1
2-1
2-2
2-3
2-6
2-8
2-9
2-10 | | | Air distribution and fire protection. 2-9 (CBR) protection 2-10 Economic factors 2-11 Survivability and reliability 2-12 | 2-11
2-12
2-16
2-12 | | CHAPTER 3. | UNDERGROUND HEAT TRANSFER | | | | Underground heat conduction fundamentals3-1 Underground conduction standard calculation method3-2 | 3–1
3–2 | | | Underground conduction shortcut 3-3 calculation method | 3–10
3–15
3–18 | | | Thermal properties of materials 3-6 and structures 3-7 Conversion time duration 3-7 Trend analysis 3-8 Sample problems 3-9 | 3–26
3–26
3–26
3–33 | | CHAPTER 4. | HVAC EQUIPMENT | | | | General 4-1 Air cleaners 4-2 CBR filters 4-3 Coils and piping 4-4 Refrigeration equipment 4-5 Fans 4-6 Duct systems 4-7 Humidity control systems 4-8 Computer area cooling 4-9 Böilers and heat recovery 4-10 | 4-1
4-3
4-7
4-9
4-9
4-9
4-10
4-11 | ## 28 November 1986 | | | Paragraph | Page | |-------------|---------------------------|---|-----------------| | CHAPTER 5. | WASTE I | HEAT DISPOSAL | | | | Heat sink | ts | 5–1 | | | Once thro | ugh and recirculated | | | | reservoir | ·s | 5-1 | | | | rvoirs5–3 | 5–3 | | | | heat sinks5-4 | 5 -4 | | | Sample p | roblems | 5–5
5–12 | | | | 5–7 | 5-12
5-14 | | CITA DEED C | | | 0-14 | | CHAPTER 6. | | AMINATION FACILITIES | 0.1 | | | | | 6–1
6–2 | | | | nination6-3 | 6–5 | | | | on | 6–9 | | APPENDIX A. | REFERE | A-1 | | | APPENDIX B. | , | | B-1 | | GLOSSARY | | | Glossary | | | | | | | | | LIST OF FIGURES | | | | Figure 3-1. | Wall flux ratio of equivalent cylinder or sphere. | 3–5 | | | 3-2. | Thermal resistance factor, cylinder model, warm-up. | 3–6 | | | 3-3.
3-4. | Thermal resistance factor, sphere model, warm-up. | 3–7
3–€ | | | 3- 4 .
3-5. | Thermal conductance factor, cylinder model, holding. Thermal conductance factor, sphere model, holding. | 3-0
3-9 | | | 3-6. | Underground cavity, typical isotherms. | 3–3
3–11 | | | 3-7. | Rock shell volume isometric. | 3–12 | | | 3-8. | Typical warm-up temperature profiles. | 3-13 | | | 3-9. | Volume averaged rock shell temperature ratio. | 3-14 | | | 3-10. | Tunnel air temperature, amplitude and lag factors. | 3–17 | | | 3-11.
3-12. | Density and thermal conductivity of igneous rocks. | 3–21
3–22 | | | 3-12.
3-13. | Unfrozen silt and clay soils conductivity. Frozen silt and clay soils conductivity. | 3–22
3–23 | | | 3-14. | Unfrozen sandy soil conductivity. | 3–24 | | | 3-15. | Frozen sandy soil conductivity. | 3–25 | | | 3-16. | Warm-up heat flux for $k = 1.2$ and 25 ° F differential. | 3–29 | | | 3-17. | Warm-up heat flux for $k = 1.7$ and 27° F differential. | 3-30 | | | 3-18. | Holding heat flux for $k = 1.2$ and 25° F differential. | 3–31 | | | 3-19. | Holding heat flux for k = 1.7 and 25° F differential. | 3–32 | | | 4-1.
4-2. | CB particulate and gas filter. CB gas filter model FFU-17/E. | 44
45 | | | 4-2.
4-3. | CB filter assembly. | 4-6 | | | 4-4. | Bladder-type attenuator for chilled water. | 4-8 | | | 5-1 . | Typical hardened cooling water system. | 5-13 | | | 6-1. | Corridor type decontamination facility retrofit. | 6-3 | | | 6-2. | M2 permeable membrane door. | 6-4 | | | 6-3. | Dual decontamination facility. | 6–6
6–7 | | | 6-4.
6-5. | Decontamination facility sized for 18 people per hour.
Contaminated clothes chute. | 6–8 | | | 6-6. | Air pressure regulator M-1. | 6–10 | | | 6-7. | Antiback-draft valve. | 6–11 | | | | LIST OF TABLES | | | | Table 2-1. | Typical personnel metabolic rates. | 2-4 | | | 2-2 . | Properties of air regeneration chemicals. | 2–5 | | | 2-3. | Humidity tolerance of selected materials. Particulate filters. | 2–6
2–15 | | | 2-4.
2-5. | Gas filters. | 2–15
2–15 | | | 2-5.
3-1. | Typical thermal properties of various materials. | 3–20 | | | 3-2. | Selected parameters for trend analysis. | 3-28 | | | 4-1. | Performance of dry media particulate filters. | 4-2 | | | 5-1. | Comparison of 10-day capacity heat sinks. | 5–7 | | | 5-2. | Reservoir length versus time at fixed 400 ft section | 5–9 |